
Ucg/assi fled
SEjURIIfY ULASSIFICArION OF THIS PAGE

REPORT DOCUMENTATION PAGE]H

I&. REPORT SECURITY CLASSIFICATION R TDC ETTON PAGI
lb. RESTRICTIVE MARKINGS f.

3 DISTRIBUTION/ AVAILABILITY OF REPORT

AD-A212 598 Unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR 89-1036
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION t- .,
Cornell University (If applicable) Office of Naval Research .0 r

6c. ADDRESS (City. State, and ZIP Code) lb. ADDRESS (City, State and ZIP Code) A

Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University Arlington, VA 22217-5000
Ithaca, NY 14853
B. NAME OF FUNDINGISPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
Office of Naval Research N000014-86-K-0092
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
800 North Quincy Street PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217-5000 ELEMENT NO NO. NO ACCESSION NO

11, TITLE (Include Security Classification)

Verifying Safety Properties Using Non-deterministic Infinite-state Automata
12 PERSONAL AUTHOR(S)
-Nils K1r-lund and Fred B. Schneider
13a. TYPE OF REPORT I 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Interim FROM TO September 8, 1989 I30
16. SUPPLEMENTARY NOTATION

/7. ' '-

17. COSATI CODES I8 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUB-GROUP -concurrent programming, temporal logic'i program

1'-erLcaton. Buchi automata, real-time

19. ABSTRACT (Continue on reverse if necessary and identify by block number) ..

A new class of infinite-state automata, called safety automata, is introd d Any safety
property can be specified by using such an automaton. Sound and complete pro obligations
for establishing that an implementation satisfies the property specified by a safty
automaton are given. 7, , 9., ' .: ; - , , .. . ''P.F

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
,M(INCLASSIFIED/UNLIMItED 0 SAME AS RPT. 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Fred B. Schneider 1 (607) 255-9221 1

DO FORM 14 73.64 MAR 83 APR edtion may be used unti exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obiolete.

920 106

, TIS GPA&I

s DTIC TAB
7Unnnotirce,-

rI

Verifying Safety Properties I sing
Non-deterministic Infinite-state Automata*

Nils Klarlundt Fred B. Schneider

September 8, 1989

kbstract

A new class of infinite-state automata, called safety automata, is
introduced. Any safety property can be specified by using such an
automaton. Sound and complete proof obligations for establishing
that an implementation satisfies the property specified by a safety

automaton are given.

1 Introduction

A central problem in program verification is establishing that an imple-

mentation satisfies some specification of interest. Various ways to solve

this problem have been explored [7]. One recent and promising direction is
to extract proof obligations for an implementation directly from an automa-

ton formulation of that specification. This approach was first introduced

in [3] for a limited class of specifications and was subsequently extended

in [5] and [14] to handle any specification that could be expressed using
finite-state (Bfichi) automata.

SThs material is based on work supported in part by the Office of Naval Research un-
der conutc N00014-86-K-0092, the National Science Foundation under Grant No. CCR-
8701103, and Digital Equipment Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not reflect
the views of these agencies.

tSupported by a grant from the University of Aarhus, Denmark.

.- -- = i m m m1

However, the class of specifications that can be expressed using Biichi-
automata does not include all properties of interest. There exist important
properties that only can be expressed using infinite-state automata. Proper-
ties described by first-order temporal formulas with universal quantification
over global symbols [131 are examples of such properties. These properties
include real-time response as well as specifications involving unbounded
buffers. The methods in [5] and [14] also suffer from another limitation:
they do not directly deal with properties expressed using non-deterministic
automata. Yet, in some cases, using non-determinism allows more natural
and more concise specifications because different assumptions about future
courses of events can be considered independently. In contrast, determin-
ism requires all such assumptions to be considered at the same time and
can lead to a state-explosion in the automaton.

This paper extends automaton-based approaches for verification to in-
dude properties expressible by a class of non-deterministic infinite-state
automata, called safety automata, that are powerful enough to specify any
safety property. Safety properties assert that some "bad thing" does not
happen during execution of an implementation. Examples of safety prop-
erties include deadlock-freedom, where the bad thing is occurrence of dead-
lock; mutual exclusion, where the bad thing is simultaneous access of several
processes to a shared resource; and real-time response properties such as
"a reply is received within 5 seconds", where the bad thing is that no reply
is received by the 6th second.

Safety automata cannot specify liveness properties, properties asserting
that some "good thing" does happen during execution. The automata
used in [5] and [14] could express certain liveness properties. Thus, at
the expense of not handling liveness properties, the approach described in
this paper extends automaton-based verification to the class of all safety
properties.

The main contribution of this paper is to give sound and complete proof
obligatons for deducing that a given implementation satisfies the property
speciled by a safety automaton. These obligations are presented in two
forms. First, they are given in terms of an invariant relating states of the
implementation and of the automaton. Second, the obligations are given
in a style similar to that of Hoare's programming logic [9].

The organization of this paper is as follows. In section 2, we intro-
duce a notation for describing infinite-state, non-deterministic automata.

2

Section 3 defines safety automata and proves that the properties they can
specify is exactly the class of safety properties. Automata to model imple-
mentations are described in section 4. Next, in section 5, we give sound and
complete proof obligations to verify that an implementation satisfies a prop-
erty specified by a safety automaton. In section 6, these proof obligations
are reformulated as Hoare triples; and, sound and complete decomposition
principles that allow triples to be broken into simpler ones are given. The
method is illustrated in section 7 with an example. Finally, relation to
other work and conclusions appear in section 8 and section 9.

2 Properties and Automata

Formally, a property defines a set of infinite sequences of events. Events
may be states of an implementation or actions of an implementation-our
results are independent of the view taken, hence the neutral term "event".
An implementation II is regarded as a generator of events, and the property
L(Il) defined by IH is the set of sequences of events generated by executing
I. A specification E also defines a property. This property, L(E), consists
of all event sequences that satisfy the specification. An implementation II
satisfies a specification E if and only if L(il) C_ L(E), that is every event
sequence generated by I satisfies E.

2.1 Automata Diagrams

An automaton defines the property consisting of exactly those sequences of
events that it accepts. As an exam , r a system whose interface consists
of a register1 N and a green light, c, . ,'.er the property2 'P containing all

sequences in which the first event is woading N with some value n such
that subsequently the green light is flashed at most n times. If events
model actions, then P concerns two types of actions, "loading register N"
and "Atuing the green light", although an implementation might perform
other actions as well. If events model states, then P concerns states, where
a state, among other things, assigns a value to N and indicates whether the
green light is illuminated.

1Typewriter font is used for variables in programs or specifications.
2Caligraphic letters V, Q, 2 and S are used for properties.

3

4 green-light() = flash A 'C > 1 A

green-1 ight(= off

Figure 1: A,, an example automaton diagram.

We employ automaton diagrams to define the infinite-state automata
we use to specify properties. Figure 1 is an example of an automaton
diagram. It represents an automaton A, for property P, assuming events
are actions. An automaton diagram is a directed graph, not unlike the
usual representation of a finite state automaton [10). However, in order to
describe an infinite state space, the diagram includes node variables. This
permits a single node to denote a set of automaton states. For example,
the diagram of Figure 1 has two nodes3 A and B, where node B introduces
a node variable C by naming it under a dashed line. Node variable C is used
as a counter that bounds the maximum number of times the green light
may still flash in a given execution.

Each node in an automaton diagram contributes a set of automaton
states. In Figure 1, automaton states defined by node B have the form
(B, (C)), where C is an integer. Node A defines a single state, (A, 0),
abbreviated (A). Thus, the set of automaton states for A', is {(A)} U
((B, (C)) I integer(C)}. In general, a node P that introduces node variables
Xl,...,X. defines automaton states of the form (P,(X,...,X,)), where

(X 1 ,...,X,), also denoted 9, is a value assignment that associates the
value X with node variable Xi. We say that an automaton is in a node P
if the automaton is in a state of the form (P, (...)).

3Boldface capital letters are used to designate nodes of a automaton diagram.

4

Edges in an automaton diagram are labeled by transition predicates.4 A
transition predicate labeling an edge between a node 'P and a node P' may
mention node variables of 'P, node variables of P', and event function,.
An event function f(e) maps an event e to a value. The value of an event
function f() appearing in a transition predicate is f(e), where e is the event
on which the transition is taken.

In a transition predicate, we write 'X to denote a node variable X that is
introduced by "P and write Y' to denote a node variable Y introduced by P'.
Transition predicates define automaton transitions in the expected way: an
event e may cause a transition from a state (P,X) to a state (P', X') if
there is an edge from node 'P to node P' in the automaton diagram and
this edge is labeled by a transition predicate satisfied by "Ar and X" and e.
For example, consider the self-loop in Figure I labeled

green-light() = flash A'C > 1 A C' ='C - 1.

It asserts that if an event occurs for which the event function greendl ight ()
has value "flash" and the automaton is in a state (B,'C) with 'C > 1,
then a transition is possible to state (B,C') where C' - C - 1 holds.
By convention, an explicit predicate need to be not given for a variable
that does not change its value during a transition. Thus in Figure 1, the
predicate'C = C' is assumed for the transition corresponding to the self-loop
labeled green-light() = off.

For automaton states 'q and q', we write 'q -! q' if the automaton may
enter state q' from state 'q when event e occurs. The relation --+ is called
the transition relation for the automaton. When 'q -4 q' holds, q' is said to
be a successor state of 'q on e.

For example, the transitions of A-p from node B to node B are

(B,'C) - (B, CI

if and only if

(gre..light(e) = flash A C'="C - 1 A 'C > 1)
V (green-light(e) = off A C'= 'C).

'Although here we define automata by means of predicate logic, our verification method
is not dependent on any assumptions about recursiveness of transitions and state spaces.

5

An initial node P of an automaton diagram is a node that has an in-
coming edge with no origin node. Such an edge may be labeled with a
predicate restricting values of the initial states that correspond to node P.
The set of all initial states is the set of states of initial nodes. In Figure 1,
there is only one edge without an origin node. This edge terminates at A,
so the set of initial states for A, is {(A)}.

In general, an infinite-state automaton A is defined by a four-tuple
(6, Q, QO, --+) where

* 6 is the (finite or countable) set of events,

e Q is the (finite or countable) set of automaton states,

* QO C Q is the set of initial states, and

V --, is the transition relation.

An automaton A defines a property L(A), consisting of all words ac-
cepted or generated by the automaton. An infinite event sequence, w =
eo, el,... in E- is accepted by A if and only if there is a run of A over w,
where a run of A over w is a sequence of automaton states qo, q,... such
that qo is an initial state (i.e. qo E QO), and qo -% q, U q2... holds.5 An
automaton is deterministic if it has only one inititial state and if for all
states 'q and all events e there is at most one state q' such that 'q I+ q'. A,
of Figure 1 is a deterministic automaton.

Finally, we give some notation that will be required later. Consider the
automaton A = (C, Q, QO, -+). For u = eo,..., en E P and 'q, q" E Q, we
write 'q - q' instead of

3q0,...,qn+i E Q : qA ' qn+l A qo = "q A qn+, = q'.

Note that if u is the empty string, then 7q -" q'if and only if "q = q'. We say
that automaton state q is reachable by u if qo " q for some qo E QO. State
q is rsc&able if it is reachable by u for some u E '.

6tw is the set of all infinite words over e.

6

S *

3 Safety automata

The informal characterization of safety-that no "bad thing" happens--can
be formalized as follows [2]. A property S is a safety property if and only if
every infinite sequence of events w 0 S has some finite prefix u such that
no infinite extension v E C' exists that makes u.- v E S hold.' Here, prefix
* defines the "bad thing". In terms of topology, a safety property defines
a closed set of words under the natural topology on E'. This topology is
induced by defining a basic open set to have the form u. CI for u E E*.' An
open set, the countable union of basic open sets, can be written L,. ui -Cw,
where each ui is in E'. Thus, an open set is a set of words that have common
prefixes from a set of finite words. A safety property S, being a closed set
and therefore the complement of an open set, has the form ULj7uT7F . Here,
the u,'s represent the "bad things" proscribed by the safety property.

As shown below, safety properties are exactly the properties specifiable
by a class of infinite-state automata that we call safety automata. Safety
automata are infinite-state automata that have a finite set of initial states
and a finitely branching transition relation (i.e. for all states "s and all
events e, the set of successor states on e, {s'I's -4 s'}, is finite). All
deterministic automata are safety automata, and all finite-state automata
are safety automata. For example, Ap from section 2 is a safety automaton
because it is a deterministic automaton.

The following two propositions generalize results in [4] from finite to
infinite-state automata.

Proposition 1 Safety properties are ezactly those definable by deterministic
infinite-state automata.

Proof First, we prove that the property defined by a deterministic infinite-
state automaton is a safety property. For an automaton A = (E, Q, Q0, -),
define a partial run over a finite word e0,..., e. to be a sequence of states
q,... , q.+, such that qo E Q0 and q0 A ... - q.+,. Let As be a determinis-
tic infinite-state automaton, and let the set (u, I i > 0} be the set of strings
ui in 6* such that there is no partial run of As along ui. Let S = Uj u -C",
so by construction, S is a safety property. We now show that L(As) = S.

6u. v is the sequence obtained by concatenating u with v.
7For V a set of sequences, define u. V to be {. 'uIv E V}.

7

L(As) S 5: If w is accepted by As, then from the definition of {uii >
0), w can contain no prefix from among the uj's. Therefore, w E S.

S C L(As): Let w be in S. There are partial runs of As along all prefixes
of w. (Otherwise, by definition of S, w would not be in S.) Because the
automaton is deterministic, these partial runs are ordered under the prefix
ordering (either any two runs are equal or one is a prefix of the other).
Their limit defines a run over w. Hence, w is accepted by As.

Next, we prove that every safety property can be specified by a deter-
ministic automaton. Consider a safety property S = aJ u, • C", where the
ui's are in C*. To construct an automaton A, such that L(AS) = S, we
proceed as follows. Let As = (C, {uIi >_ 0},{e},-41), where u -!A v if
and only if u • e = v-8 This defines a deterministic automaton that checks
that its current state-the past sequence of events--does not contain a
prefix among the uj's. Thus, w E L(As) if and only if w does not have a
prefix that is in {uili > 01 and therefore, w E L(A) if and only if w E S. 0

Properties defined by non-deterministic, infinite-state automata need
not be safety properties. To see this, consider a property asserting that
a green light will flash eventually. This property is not a safety property
because any prefix is remediable: simply extend the prefix with an event in
which the green light flashes. A non-deterministic automaton can recognize
this property-the automaton starts by guessing when the green light will
flash and counts down to that event, checking that the green light has
flashed before the counter reaches 0. Because the set of initial states for this
automat&, is infinite, the automaton is not a safety automaton. In fact, the
restrictions in the definition of safety automata limit their expressiveness
to that of deterministic infinite-state automata:

Proposition 2 All safety automata ezpress safety properties.

Proof A construction, similar to the classic subset constructiQ for finite-
state atomata [101, can be applied to construct a deterministic automa-
ton Ad from a finitely branching automaton A = (E, Q, Q0 , --+) such that
L(A) = L(Ad). Let the deterministic automaton Ad be (C, F(Q), {Q0 }, --+d),
where F(Q) denotes the set of finite subsets of Q and M - N if and only

at denotes the empty string.

8

if N = sWi3's E M s.t. 's -f+ s'} A 0. The result now follows from Proposi-
tion 1. 0

Virtues of Non-Determinism

Although non-deterministic safety automata are no more expressive than
deterministic ones, non-determinism allows some safety properties to be
specified more naturally. This is because non-determinism is often used
implicitly when we reason about the future. For example, the property

R : (a) p is true and then q will always be true, or
(b) r is true and then s will always be true

is expressed in a way that views the future as a disjunction of two different
courses of events, namely (a) and (b). Here, p, q, r and s are (not necessarily
disjoint) predicates about events, and each course of events contains expec-
tations about the future that are not implied by the present. For example,
"p is true and then q will always be true" is a course of events containing
the implicit assumption that q will be true for the future, although this is
not necessarily the case just because p is true of the present. Having p true
of the present does not necessarily ensure this course of events.

Property 1Z is specified both using a non-deterministic automaton A 2

and a deterministic automaton Al, in Figure 2. Observe that for AR,
each of the two initial nodes corresponds to a different course of events-P
corresponds to course (a) and Q corresponds to course (b).

Intuitively, a deterministic automaton like AR, will be more complicated
than its non-deterministic counterpart because each state in A2 , must in-
corporate information about possible courses of events. Each state of a
non-deterministic automaton (like AR) need not take into account many
possible courses because the state itself represents an assumption about
the coone For example, if both p and r are true for the first event. Aid
make a transition from PR to QS because both a continuation of course
(a) and of course (b) are possible. In contrast, A* can "guess" P or R,
depending on the course that will transpire.

9

q q

IPI

-R QQSR ss

Figure 2: Am (left) and Am, (right).

10

• . ,, ,, , Ii is a aI Iii"

4 Implementation automata

Just as we can use safety automata to describe specifications, we use im-
plementation automata to describe implementations. An implementation
automaton is an infii;'te-state automaton. Since dead states can be deleted
from an infinite-state automaton without altering the language accepted by
that automaton [8], we assume that implementation automata have no dead
states.9 An implementation automaton is a safety automaton if its set of
initial states is finite and its transition relation is finitely branching. In the
absen, e of unbounded non-determinism, all programs can be represented as
safety automata. The verification method presented in this paper, however,
works even for implementation automata that are not safety automata.

An implementation automaton An = (6, Qn, QO, -n) for a program I1
is defined as follows. The event set C is the set of program states; the set Qn
of automaton states is also the set of program states; the set QO of initial
automaton states is the set of initial program states; and the transition
relation is defined such that 'p P-- n p' if and only if some atomic action of
the program transforms the program state from p to p'.

Figure 3 is an example of program II, that runs forever. The program
state is defined by a program counter and two variables, a and b. Thus,
a program state is a pair p = (1, F), where t denotes the value of the
program counter, and F = (a, b) is a value assignment. To formulate the
impiementation automaton

An.. =(V, Qn., 0',l__nz= (S Qfle ,,)

for this program, let the domain of program labels be denoted C and the
domain of value assignments be denoted V. Thus, every program state p
is an element of £ x V. Define C and state space Qn., to be C x V; define

ns, = ((to, i)ji E V}; and define transition relation --+n. so that, for

exampe, it includes (12, (15,30)) +(e,,)) (V3, (16,30)).

9A dld date in an automaton is a reachable state from which it is not possible to
extend any partial run.

11

Lo: (a, b :-0, 0)

4: do true -4
12: (a :- &+1)
t: (b :- b+2)

od

Figure 3: Program II .

5 Proof Obligations

We now turn to the question of establishing that an implementation satis-
fies a specification. In particular, we develop proof obligations for demon-
strating that L(An) g L(AE), where An = (6, Qn, Q,--+n) is an imple-
mentation automaton and AE = (C,QM,Q, -E), called the specification
automaton, is a safety automaton. Satisfaction of these proof obligations
allow us to conclude that implementation II satisfies specification E.

The proof obligations relate states of the implementation automaton
to sets of states of the specification automaton and ensure that this cor-
respondence is maintained during each transition of the implementation
automaton. To simplify the exposition, we refer to states of the specifi-
cation automaton as specification states and states of the implementation
automaton as implementation states. Define a configuration to be any fi-
nite set of specification states. Configurations are used to describe sets of
reachable states of the specification (safety) automaton. Transitions on an
event e between configurations C and C", denoted 'C - C, occur if and
only if

(i) C' .
(ii) Va' E C': 39 E C :'s -e_ s'

Thus, I'C - C' means that (i) transition to some new state is possible and
i) each new state is a successor state of some old state.

The correspondence between implementation states and configurations
is described by a predicate I called an invariant that associates a set of
configurations with each implementation state. We write I(p, C) to denote

12

that configuration C satisfies invariant I" on implementation state p. Two
proof obligations suffice to demonstrate that the correspondence asserted
by the invariant is maintained.

O1: p E Q0 : (3C:Z"(p,C) A 0 C C QO)

02: 'p p A "(p,'C) =: (3C':'c-4C' A Z(p',C'))

Obligation 01 ensures that for every possible initial implementation state,
there must be a corresponding non-empty set of initial specification states.
02 ensures that if the implementation automaton can make a transition
from 'p to p' on e and IC is a possible configuration corresponding to 'p,
there must be some configuration C' such that C -4 C' and C' corresponds
to implementation state p'.

Demonstrating the correspondence between implementation states and
configurations using 01 and 02 is necessary and sufficient to establish that
L(An) _ L(AE) holds. That is, if an invariant can be found satisfying 01
and 02, then L(An) C L(AE) holds. And, whenever L(An) _ L(AE) holds,
there is an invariant satisfying 01 and 02.

Proposition 3 Let An be an implementation automaton and AE be a safety
automaton.
(Soundness) If there is in invariant I satisfying 01 and 02, then L(An) _
L(AE) .
(Completeness) If L(An) _ L(Ar), then there is an invariant I satisfying
01 and 02.

Proof (Soundness) Let w = eo, el,... be accepted by An. Thus, there
is a run po -% p " ... of An over w. Since po belongs to QO, by condi-
tion 01 there is a configuration Co such that I(po, Co) and Co C Q1. By
condition 02, there is a configuration C, # 0 such that I(pt, C,) and for
all a, E C, there is an so E Co and so 1s,. By repeating this argument,
we obtain C 1 A - Thus, for any n and any s E C. there exist
-o E o,...,n1 E C.-, such that so s.- a. We now construct
a forest of trees generated as follows. The nodes of the trees are of the form
so -% " -' .s. such that for all 0 < i < n, si E C holds. The edges are of
the form

(so -n s !" -% - sn+0),
, •f~ •.. 5 n, 0 " 3

13

and the roots of the trees are all so such that so E Co.
This forest defines a run of AE over W, as follows. By definition of a

safety automaton QO is finite and --+E is finitely branching. Therefore, the
forest consists of a finite collection of finitely branching trees. Hence, by
Kanig's lemma, there is an infinite path through one of the trees. This path
defines the desired run of AE over w. Hence, w is accepted by AE.

(Completeness) Assume L(An) C L(Ar). Define I so that Z(p, C) is
true if and only if C 0 0 and p is reachable by u for some finite word
u - e~o,... , e.-I (possible the empty word) such that

C = {sJ3eo,...,e._I and arun so -% ... '!-V . of AE with 8, =8)

Since QO is finite and AE is finitely branching, all C's such that I(p, C)
holds axe finite.

To prove that 01 is satisfied by this 1, assume that p E QO. An has no
dead states because it is an implementation automaton. Therefore, there
is an infinite word w that is accepted by An.

Since, by assumption L(An) C L(AE), we conclude that L(AE) is also
non-empty, and QO # 0 holds. By the definition of 1, Z(p, Qo) is true, so
01 is satisfied.

To prove that 02 holds, assume its antecedent-that there exist p, e, p'
and C such that 'p -4 p' and Z('p, "C)-is true. Thus, there is a finite word
u such that 'p is reachable by u and C is exactly the set of states that AE
might be in after having read u. Define

C' = {s'1 3s E V: 's -4 J'}
Evidently, p' is reachable by u- e, so C' is exactly the set of states AE might
be in after having read u - e. Thus, by the definition of ", we conclude
Z(p', C') holds and it remains to prove V'C-+ C'. To prove "C -4 C', we
show that conditions (i) and (ii) of the definition of -- for configurations
axe satisfied. Condition (ii) is satisfied due to the way C' was just defined.
To show that condition (i) is satisfied, note that because p' is reachable by
u. e aad An contains no dead states, there is an infinite word w such that
u . e -w E L(An). By the assumption that L(An) C_ L(AE), we conclude
that u- e -w E L(Ar.).10 Therefore, the set C' can not be empty and so (i)
is satisfied. 0

10This is the reason we have assumed implementation automata have no dead states.

14

6 A logic of automaton diagrams

Proof obligation 02 can also be formulated using triples similar to those of
Hoare's logic [9]. We require the following notation for this.

An automaton proof outline is a program annotated with automaton as-
sertions. The assertions define the invariant used in obligations 01 and
02. A configuration descriptor [P,...,P,;P1 ,...,pr] consists of nodes
Pl,..., P, and configuration predicates pl,... ,p, (with r > 1). Each ph is a
predicAe over the values of the program variables i and the node variables
Xh of node Ph. For a program state (t,), the configurations of the configu-
ration descriptor [P 1,..., Pr ;pI,... ,prI are all sets {(PI,g),..., (Pr,.,)}
such that p, A ... A p,. Configuration descriptors are used to define sets
of possible nodes and value assignments that can occur during an exe-
cution. Hence, the configuration {(P, 1),...,(Pr,.')} means that the
automaton can be in any node Ph with value assignment Xh. To make
the notation clearer, we write (P 1 , . .. , P; ,...r, ;) for the configuration
{(P 1, 9),... -, (Pr,,.,)}.-

An automaton assertion at a program label t is used to define the in-
variant associated with program states in which the value of the program
counter is 1. Such an assertion is given as a set of m configuration descrip-
tors (m > 0),

u".., P, IP', ,

(1)
[P',.' P ;P ,/ ..]} •I

This assertion defines 17((1,), C), the invariant at 1, to hold if and only if
l A ... A pI,, where C = (P',-.. ,Pi;XI,... ,-f.) for some i (1 < i <).

Thus, C is a configuration of assertion (1)-or C satifes the assertion-if
and only if it is a configuration of one of the m configuration descriptors in
the ausertion.

Obigations 01 and 02 can be expressed in terms of automaton as-
sertions of an automaton proof outline. To express 01, assume that the

If An had dead states then it might be possible for An to continue from a dead state to
a dead state (although not ad infinitum) without the specification automaton being able
to continue. In such cases, it will not be possible to associate a configuration with a dead
state, since rewriting requires configurations to be non-empty.

15

assertion corresponding the initial program label has form (1). Then using
the definition of the invariant given above, we can rewrite 01 as

o1': Vi: 3i: 3 1 ,...,Xr,: pA...^ pr,

A (P, 9) E Q A..A (Pi.A:)q

where QO is the set of states determined by the initial nodes.
Obligation 02 can also be expressed in terms of automaton assertions.

For any two program labels 4, and I# such that that I's can be reached
from 4. by executing a single atomic action (S), we can formulate 02 as
the automaton triple

{p"., ,p ;1,. 11

... . p ,]
[P',...,- P',; A,.., p,,]}

(2) 4 S: (S)

[QT,. • , s"; q1,.. as]

In an automaton triple, the assertion preceding the atomic action is called
the precondition and the assertion following it is called the postcondition.
Informally, the meaning of triple (2) is that if "C is a configuration satisfying
the precondition, then after execution of (S), there is a configuration C'
satisfying the postcondition and ' --+ C' holds.

The meaning of (2) is a conjuntion of the meanings of triples with some-
what simpler preconditions:

{ [P i , . • • '; .. ., ,

4: (s)
(3) {Q,.,Q,;q,..,q.]

[Qn1, " • , "; qn,.'., q.

Thus, we first formalize the meaning of (3). This triple is valid if and
only if whenever the automaton configuration and program state together
satisfy the configuration descriptor in the precondition, then executing (S)

16

produces a new program state such that there is some new configuration
defined by one of the configuration descriptors of the postcondition and
there is a transition from the old configuration to this new configuration
on the new program state. More formally, (3) is valid if and only if given
a program state (4, i) and a new program state (t, z) that results from

executing (S) and value assignments .I,... I Ii. that constitute a configu-
ration of the configuration descriptor in the precondition of (3), then there
is some configuration descriptor
(4) 1[,.,Q; ,.,g}

of the postcondition of (3) and some value assignments Xt*J...,X,-' such
that

(QI,. •..••

is a configuration of (4), and

(pII,...,p, i;, ,, i)(._ (,.,Q ; ,,.,2)

holds."
Thus, the meaning of (3) is given by

I<v<rj

()31 j <__n:3 i. ... ,

(X,",," ,, (j) AA qj

"Hre,- is the transition relation for configurations defined in section 5:

(,..,,,, ,,.. rd, ",' * 41,) t . (... ,Mai; , ... ,128i

holds if snd only if

VI< kS <aj:
31 <h< r:

17

where (l, i) -n (ls, X') denotes the transitions defined by (s) and where
the predicate p with all its variables ' and i marked with grave accents is
denoted 'p. Similarly, p' is the predicate p with its variables marked with
acute accents.

The meaning of (2) is then

02': A Th'.
1<i<,.,

Triple Decomposition

Triples like (2) at first may appear intimidating. Fortunately, such triples
can always be decomposed into simple triples of the form:

{[P; PI)
t: (S)

([Q; q]}
1,0:

According to (5), the meaning of such a triple is

(6) (I.,Y) --*n (10,4) A 'p =* 3.9': (P;:) --+ (Q;-g) A q'.

Decomposition of general triples into simple triples is accomplished by
using the following propositions. The first follows directly from the formal
definition of (2) as the conjunction of triples having form (3).

Proposition 4 To verify a triple like (2), it is necessary and sufficient to
verify for each 1 < i < m that

4: (s)
{[QI,... Q01,; qIII,... ,q,111
[... , ,. r . ..

holds.

The next proposition is a case analysis and permits a triple like (3)
to be reformulated as a collection of triples, each of which has only one
configuration descriptor for its postcondition.

18

Proposition 5 The triple

{[Pi,. ., Pr;pi,... ,Pr]}
4 : (S)

(7) [Q),- .. •, Q.,; q1 ., q.,]

[q, s."; q1,... I]
to :

holds if and only if there ezist predicates ci with free variables
Z ~-,'Xi,'.. ,'X,, where 1 < j < n such that

(8) V c, = true
1<j<n

and for all 1 <. j < n

{[P,,, P,;P,.. ,'P']}

(9) cj J {[j, ' ,Q; ql,'" •, qj#l
4 :

Proof Let Tpl be the triple (7) and for 1 :5 j _5 n, let Tpl. be the triple
in the corresponding consequent of (9). It follows directly from (5) that

(10) TpL V Tpl,.
1<j~n

(If) Since, by (9), cj =: Tplj holds for 1 < j :_ n, it follows that
(V3 cj) = , (Vj Tplj). Therefore, by (8), V1 Tplj holds and by (10), triple (7)
holds.

(Only if) Assume that (7) holds and define for I < j 5 n

j- TpI.

By (10) and the definition of c,, Tpl - V c,. Then, by the assumption that
(7) holds, (8) is satisfied. Condition (9) is trivially satisfied. 3

The next proposition is used to decompose a configuration descriptor
in a postcondition so that nodes can be considered one at a time.

19

Proposition 6 The triple

4: (s)
{[Ql,. . ,;qj,- . ,]}

£0 :

holds if and only if for all 1 < k < s

{[Pl,..., P,; p " ,,}

(11) t: (s)
{[Q; qkl]}

t o :

Proof Follows directly from (5). 0

Finally, the configuration descriptor in the precondition can be decom-
posed according to the case analysis principle below.

Proposition 7 The triple

U[PI,.. IV; A I , ,p])

(12) 4: (S)
{[Q;q])

holds if and only if there are predicates 4 with free variables ', X', "X, for
1 < <r such that

(13) A ph: V do
1~h<r ~ her

and for all 1 :_ h < r:

{[Ph; ph]l
(14) d% 4 . 1: (S)

S([Q;q]I

Proof Let Tpl be (12), and for 1 _< h < r, define Tp4 to be the triple in
the corresponding consequent of (14). It follows from (5) that

20

..... ...lumuwa nmanmunmin lmen U m | mow

(15) ((ph) A Tpl)((A Ph) A V Tplh)).
l<h<r 1 .<h~r l<h<r

(If) Assume that (13) and (14) hold. According to (5), it is sufficient to show
that (AhPh) =:> TpL By (13) wehave(&ph) =, ((Ahph)A(Vhdh)), soit
follows from (14) that (Ah Ph) 4, ((Ah Ph) A (Vh Tplh)). Thus, (Ah Ph) €

(Vh Tplh) holds, and by (15), we obtain (AhPh) =*- Tpl, as desired.
(Only if). Assume that (12) holds, i.e. TpL is valid, and define dh =

Tpk for 1 < h r. By the assumption, (Ah Ph) => ((&A Ph) A Tpo trivially
holds. Then, by (15), (Ah Ph) => (&ph) A (Vh Tplh) holds, and by the
definition of ci, it follows that (Ah Ph) =* (Ah Ph) A (Vh dh) holds. Thus,

(Ah Ph) =,A (Vh dh) holds. Hence, (13) holds. Condition (14) is trivially
satisfied. 0

The aboe decomposition propositions are based on having configura-
tions defined by r configuration predicates, p,... ,p,--one for each node
P, in the descriptor-rather than by a single predicate. Having these r
predicates permits the decomposition of Proposition 6, which is something
that would not have been possible if only a single predicate were used.

7 Example

To illustrate the method of section 6, we consider a simple but somewhat
contrived example.

Define the property p; q to hold at the present moment if p holds now
and q holds at the next instant. Such a property is not uncommon when
reasoning about concurrent systems and is formulated in temporal logic as
p A oq. Now, consider the more complicated property

T : Property p; q holds at least every 5 instants.

This ioperty is easy to specify using a non-deterministic automaton, as
showisk Figure 4. (Specifying T using a deterministic automaton is more
diffick because p; q might hold in overlapping intervals if p and q are not
mutually exclusive. The automaton must keep track of all guesses of such
intervals.) A program, UT, purported to satisfy T with p - Po and q _ q()
is depicted in Figure 5. There, braces (and) in the if statement assert
that execution of an atomic step from 11 consists of either executing p -true

21

T' ='T+ 1 A
T' <5

T'q=0TO

A fB

q A T' = 0

Figure 4: AT.

and setting the program counter to 12, or executing q: -true and setting the
program counter to to. We now demonstrate that HT indeed satisfies T.
In order to this, the automaton proof outline PO(IIT) in Figure 6 is used.
(The notation "-" is used there to denote the configuration predicate true.)
We must show that the proof outline satisfies obligations 01' and 02'.

Obligation 01' is valid because the assertion at to, {[A; T = 0]}, is
satisfied by the initial state (A; 0) of AT, for any initial program state.

The triple

([A;T = 0]}
1o : (p, q: - true, false);

{[A,B;T = 1,.])
tj :

is proved as follows. Using Proposition 6, it is decomposed into the simple
tripkS

{[A;T = 0])
(16) to: (pq:= true, false);

{[A;T = 11)
tj :

and

22

do
1o: (p, q: true, fale);
Li: (if

true -

p:.tre) ;
12 (q:-true);

true -
q:-true);

fi
od

Figure 5: Program]IT

do {inv: [A; T=O]}
t o : (p,q:m true, fabe);

{[A,B;T- 1,_}
Li: (if

true -.

p:-true);
([B; .])

12 : (q: -true);
true --#

q: -true);
fi

od

Figure 6: Proof outline PO(IT)

23

{[A; T = 0]}

(17) o (p,q:= true, fale);
{[B;_}

t4:

According to (6), the meaning of triple (16) is

((p'=trueA q' = A 'T=O) =
(3T:(T'='T+1AT'<5) A T'=1).

Here, (p" = true A q' = false) is the formulation of the program transition
--+n defined by the assignment statement at to. The predicate 'T = 0
is obtained from precondition {[A; T = 0]} by marking the configuration
predicate with grave accents; the automaton transition predicate T' = 'T +
1 A T' < 5 is obtained from the self-loop of node A in Figure 4; and
the predicate T' = 1 is obtained by marking the configuration predicate in
postcondition {[A; T = 1]1 with acute accents.

Similarly, the meaning of triple (17) is

(19) ((p'= trueAq'=false) A 'T = 0) *, (p).

Triples (16) and triple (17) are valid because (18) and (19) %re tautologies.
The triple corresponding to the first branch of the if statement,

{[A,B;T = 1,_-}
tL: (if

true -

p:-true);
{[B;-I)

t2:

is verified by decomposing it using Proposition 7 and choosing true for d,
and ful e for d2 . Hence, we need to verify

{[A; T = 1]}
tL: (if

true -

tpe -true);
([B; _}

t3

24

and

{[B;_]}
I,: (if

trute --+
false o tr

p:=-tre);
{[B;-I

12 :

The first formula is equivalent to

true =t (((p'=trueAq'=') A 'T=I) = (p')),

which is a tautology. The second formula is trivially valid.
The triple corresponding to the second branch of the if statement,

{[A,B;T = 1,_}
Li: (if

trute
q:i=true);

to: {(A;T = 01

is decomposed using Proposition 7 with false for d, and true for d2, so it is
necessary only to verify:

{[B;_]}
41: (if

tr20ue
(20) q: -true);

to: {[A;T =01}

which, according to (6), is

((p='pAq'= true)) =o- (7T':(q'AT'=O) A T'=0),

a tautology. Finally, the triple

{[B; _]}
12 : (q:-true);

{[A; T = 011
to :

is the same as (20) except for the labeling.

25

8 Relation to other work

Use of automata on infinite words for program specification has been stud-
ied in different contexts. In [19], Wolper used finite-state automat" to de-
fine temporal logic operators. Alpern and Schneider [31 demonstrated how
invariants could be used to verify that an implementation satisfies a spec-
ification expressed by a finite-state deterministic Bfichi-automaton. This
work was generalized in [5] to Boolean combinations of finite-state deter-
ministic Bilchi-automata, and in [14] to V-automata, finite-state automata
that accept a word only if all runs over the word are accepting.

Vardi gave a recursion theoretic view of the verification problem for
non-deterministic automata and defined verification conditions in terms of
computation trees and product automata [18]. Sistla proved that the verifi-
cation problem for unbounded non-deterministic automata is II -completeJ [15].

For languages over finite alphabets, relationships between automata and
topology are studied in [6]. Results similar to those of section 3 but formu-
lated for stuttering automata, were developed independently in [1].

In [17], Stark presented proof obligations based on automata for tempo-
ral logic formulas that have two types of variables: program variables and
logical variables. Stated in our terminology, Stark's proof obligations rely
on an invariant relation that associates a set of specification states (instead
of a set of sets as done in this paper) with each program state. This method
is not complete, because it requires all specification states associated with
a program state to have succesors on any event. In fact, only some of these
specification states might have successors, and therefore, Stark's method
cannot deal directly with all non-deterministic specifications. For example,
the method cannot be used to prove correctness of the program in section 7
unless the specification is first reformulated as an equivalent deterministic
automaton.

Lys&h and Tuttle used automata for hierarchical proofs of program cor-
rectnem in [121. They employed mappings between implementation and
specifcation automata in a way similar to that of Stark. The method,
therefore, suffers from the same incompleteness. Jonsson's mappings [11]
are also similar to those of Stark, and therefore also incomplete.

The method of Abadi and Lamport [1] handles more general specifica-
tions than ours, because auxiliary liveness properties can be attached to

26

* .

automata. A simulation function f is found that associates a specification
state f(p) with each implementation state p. The method is indirect, as
it relies on changing the implementation automaton by adding history and
prophecy variables so that the implementation automaton simulates the
specification automaton. Enlarging the implementation automaton with
information about the specification automaton ensures the existence of the
simulation function f.

Abadi and Lamport's work uses stuttering automata, although this is
not essential to their results. A stuttering automaton is one in which rep-
etition of (what we call) events is considered a single event. Since non-
stuttering automata can both restrain stuttering and allow time-bounded
and unbounded stuttering when needed, we prefer these automata.

Using a similar approach as in [1], Sistla developed proof obligations
for the same automata that. we consider [161. He observed that by adding
only a history component to the implementation automaton, sound and
complete proof obligations can be obtained. These obligations use invari-
ant relations that define multi-valued functions from implementation states
to specification states. Adding history information to the implemention
automaton makes each implementation state reachable by only one event
sequence; hence, only one configuration needs to be associated with each
implementation state. In our method, we circumvent the apparent need
for a history component by associating multiple configurations with each
implementation state.

9 Conclusion

This paper describes a method for verifying that an implementation satis-
fies any property specified by a safety automaton. Even though all safety
properties can be specified by deterministic safety automata, we believe
that there are advantages to using non-determinism in specifying safety
properties. In particular, the use of non-determinism permits the writer
of a spcification to make different sets of assumptions about the future.
This results in simpler specifications, because the disjunctive nature of non-
determinism makes separation between several possible courses of events
possible-even before it is clear which one is the actual course.

The paper also describes the first direct method of verification for non-

27

deterministic automaton specifications. Further, we have showed how the
method can be formulated in terms of proof outline assertions. Thus, veri-
fication is similar to that of conventional Hoare-style logics.

Acknowledgments

We would like to thank B. Alpern and A. Zwarico for their very helpful
comments on an earlier version of this paper.

References

[1] Abadi, M., and Lamport, L. The Existence of Refinement Mappings.
Proc. 2. Symp. on Logic in Computer Science, IEEE, 1988.

[2] Alpern, B. and F.B. Schneider. Defining liveness. Information Process-
ing Letters 21, Oct. 1985, pp. 181-185.

(3] Alpern,B. and F.B. Schneider. Verifying Temproal Properties without
using Temporal Logic. Technical Report TR 85-723, Department of
Computer Science, Cornell University, Dec. 1985.

[4] Alpern, B. and F.B. Schneider. Recognizing Safety and Liveness. Dis-
tributed Computing, Vol. 2, 1987, pp. 117-126.

[51 Alpern, B. and F.B. Schneider. Proving Boolean Combinations of
Deterministic properties. Proc. Symp. on Logic in Computer Science,
IEEE, 1987.

(6] Arnold, A. Topological characterizations of infinite behaviors of transi-
tion systems. Proc. 10th Col. Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 154, Springer-Verlag, Berlin,
1963, pp. 490-510.

[7] do Bakker, J.W. de Roever,W.-P. and Rozenberg, G. (Eds.). Cur-
rsu* Trends in Concurrency Overviews and Tutorials. Lecture Notes in
Computer Science, Vol. 224, Springer-Verlag, Berlin, 1986.

[8] Eilenberg, S. Automata, Languages and Machines, Vol A., Academic
Press, New York, 1974.

28

[9] Hoare, C.A.R. An Axiomatic Basis for Computer Programming. Corn-
munications of the ACM, 12, 10, Oct. 1969, pp. 576-580.

[10] Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[11] Jonsson, B. Modular Verification of Asynchronous Networks. Proc.
Sixth Symp. on the Principles of Distributed Computing, ACM, 1987,
pp. 152-166.

(12] Lynch, N. and Tuttle, M. Hierarchical Correctness Proof for Dis-
tributed Algorithms. Proc. Sixth Symp. on the Principles of Distributed
Computing, ACM, 1987, pp. 137-151.

[13] Manna, Z. and Pnueli, A. Verification of Concurrent Programs: A
Temporal Proof System. Foundations of Computer Science IV, Dis-
tributed Systems Part, J.W. DeBakker and J. Van Leeuwen (eds.),

Mathematical Centre Tracts 159, Amsterdam 1983, 163-255.

(14] Manna, Z. and Pnueli, A. Specification and Verification of Concurrent
Programs by V-automata. Proc. Fourteenth Symp. on the Principles of
Programming Languages, ACM, 1987, pp. 1-12.

[15] Sistla, A.P. On Verifying that a Concurrent Program Satisfies a Non-
deterministic Specification, Information Processing Letters, Vol. 32, No
1, July 1989, pp. 17-24.

(16] Sistla, A.P. A Complete Proof System for Promng Correctnes of Non-
deterministic Safety Specifications, Computer and Intelligent Systems
Laboratory, GTE Laboratories Inc., 1989.

[17] Stark, E. Proving Entailment Between Conceptual State Speciflca-
tiom. Theoretical Computer Science, Vol. 56, North-Holland, 1988, pp.
135-154.

(18] Vardi, M. Verification of Concurrent Programs: The Automata-
Theoretic Framework. Proc. Symp. on Logic in Computer Science,
IEEE, 1987.

29

[19] Wolper, P. Temporal Logic Can Be More Expressive. Information and
Control 56, 1-2, 1983, pp. 72-99.

30

